Search results for "spectral element method"

showing 8 items of 8 documents

FINITE ELEMENT RESOLUTION OF CONVECTION-DIFFUSION EQUATIONS WITH INTERIOR AND BOUNDARY LAYERS

1996

We present a new algorithm for the resolution of both interior and boundary layers present in the convection-diffusion equation in laminar regimes, based on the formulation of a family of polynomial-exponential elements. We have carried out an adaptation of the standard variational methods (finite element method and spectral element method), obtaining an algorithm which supplies non-oscillatory and accurate solutions. The algorithm consists of generating a coupled grid of polynomial standard elements and polynomial-exponential elements. The latter are able to represent the high gradients of the solution, while the standard elements represent the solution in the areas of smooth variation.

PolynomialApplied MathematicsMechanical EngineeringMathematical analysisSpectral element methodComputational MechanicsBoundary (topology)Laminar flowFinite element methodComputer Science ApplicationsMechanics of MaterialsMesh generationConvection–diffusion equationExtended finite element methodMathematicsInternational Journal for Numerical Methods in Fluids
researchProduct

An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes

2013

This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement.Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problem…

fourth-order Runge–Kuttata113Numerical AnalysisOptimization problemfluid–structure interactionta114Physics and Astronomy (miscellaneous)DiscretizationApplied Mathematicsta111Mathematical analysisSpectral element methodspectral element methodAcoustic wavecoupled problemcontrollabilityComputer Science ApplicationsControllabilityComputational MathematicsMultigrid methodRate of convergenceModeling and SimulationConjugate gradient methodMathematicsJournal of Computational Physics
researchProduct

Controllability method for acoustic scattering with spectral elements

2007

We formulate the Helmholtz equation as an exact controllability problem for the time-dependent wave equation. The problem is then discretized in time domain with central finite difference scheme and in space domain with spectral elements. This approach leads to high accuracy in spatial discretization. Moreover, the spectral element method results in diagonal mass matrices, which makes the time integration of the wave equation highly efficient. After discretization, the exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method. We illustrate the method with some numerical experiments, which demonstrate the significant improveme…

DiscretizationHelmholtz equationApplied MathematicsNumerical analysisSpectral element methodMathematical analysisSpectral element methodFinite difference methodExact controllabilityFinite element methodControllabilityakustinen sirontaComputational MathematicsMass lumpingHelmholtz equationSpectral methodMathematicsJournal of Computational and Applied Mathematics
researchProduct

Numerical simulation of fluid-structure interaction between acoustic and elastic waves

2011

sovelluksetneste-rakenne-mallitfluid-structure interactionexact controllabilityspectral element methodcoupled problematk-ohjelmatacoustictietokonesimulaatiotelasticnumerical simulationtutkimusmenetelmätelastiset aallotwave equationsimulointiakustiset aallotspektrianalyysi
researchProduct

On the Accuracy and Efficiency of Transient Spectral Element Models for Seismic Wave Problems

2016

This study concentrates on transient multiphysical wave problems for simulating seismic waves. The presented models cover the coupling between elastic wave equations in solid structures and acoustic wave equations in fluids. We focus especially on the accuracy and efficiency of the numerical solution based on higher-order discretizations. The spatial discretization is performed by the spectral element method. For time discretization we compare three different schemes. The efficiency of the higher-order time discretization schemes depends on several factors which we discuss by presenting numerical experiments with the fourth-order Runge-Kutta and the fourth-order Adams-Bashforth time-steppin…

Mathematical optimizationDiscretizationArticle Subjectseismic wavesQC1-999Spectral element methodGeneral Physics and Astronomy010103 numerical & computational mathematics010502 geochemistry & geophysics01 natural sciencesSeismic wavetransient spectral element models0101 mathematics0105 earth and related environmental sciencesMathematicsta113ta114Computer simulationSynthetic seismogramApplied MathematicsPhysicsta111Mathematical analysisAcoustic waveWave equationseismic wave problemsTransient (oscillation)Advances in Mathematical Physics
researchProduct

Comparison between the shifted-Laplacian preconditioning and the controllability methods for computational acoustics

2010

Processes that can be modelled with numerical calculations of acoustic pressure fields include medical and industrial ultrasound, echo sounding, and environmental noise. We present two methods for making these calculations based on Helmholtz equation. The first method is based directly on the complex-valued Helmholtz equation and an algebraic multigrid approximation of the discretized shifted-Laplacian operator; i.e. the damped Helmholtz operator as a preconditioner. The second approach returns to a transient wave equation, and finds the time-periodic solution using a controllability technique. We concentrate on acoustic problems, but our methods can be used for other types of Helmholtz pro…

Algebraic multigrid methodFinite element methodHelmholtz equationPreconditionerSpectral element methodApplied MathematicsSpectral element methodMathematical analysisExact controllabilityComputational acousticsFinite element methodControllabilitysymbols.namesakeComputational MathematicsMultigrid methodHelmholtz free energysymbolsHelmholtz equationPreconditionerLaplace operatorMathematicsJournal of Computational and Applied Mathematics
researchProduct

Time-harmonic solution for acousto-elastic interaction with controllability and spectral elements

2010

The classical way of solving the time-harmonic linear acousto-elastic wave problem is to discretize the equations with finite elements or finite differences. This approach leads to large-scale indefinite complex-valued linear systems. For these kinds of systems, it is difficult to construct efficient iterative solution methods. That is why we use an alternative approach and solve the time-harmonic problem by controlling the solution of the corresponding time dependent wave equation. In this paper, we use an unsymmetric formulation, where fluid-structure interaction is modeled as a coupling between pressure and displacement. The coupled problem is discretized in space domain with spectral el…

ControllabilityDiscretizationSpectral element methodfluid-structure interactionspectral element methodacoustic wavescoupled problemTime-harmonic solutioncontrollabilityConjugate gradient methodFluid-structure interactionTime domainCoupled problemMathematicsElastic wavesSpectral element methodelastic wavestime-harmonic solutionApplied MathematicsMathematical analysisLinear systemFinite differenceFinite element methodControllabilityComputational MathematicsAcoustic wavesConjugate gradient algorithmconjugate gradient algorithmJournal of Computational and Applied Mathematics
researchProduct

Controllability method for the Helmholtz equation with higher-order discretizations

2007

We consider a controllability technique for the numerical solution of the Helmholtz equation. The original time-harmonic equation is represented as an exact controllability problem for the time-dependent wave equation. This problem is then formulated as a least-squares optimization problem, which is solved by the conjugate gradient method. Such an approach was first suggested and developed in the 1990s by French researchers and we introduce some improvements to its practical realization. We use higher-order spectral elements for spatial discretization, which leads to high accuracy and lumped mass matrices. Higher-order approximation reduces the pollution effect associated with finite elemen…

Numerical AnalysisPartial differential equationPhysics and Astronomy (miscellaneous)Helmholtz equationApplied MathematicsMathematical analysisSpectral element methodFinite element methodComputer Science ApplicationsControllabilityakustinen sirontaComputational MathematicsMultigrid methodModeling and SimulationConjugate gradient methodSpectral methodMathematicsJournal of Computational Physics
researchProduct